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Variational principles for upper and lower bounds to all even

order Rayleigh-Schrgdinger perturbation energies are given. The
upper bound for the second order energy is just the Hylleraas
principle and the upper bounds for energies through 12th order are
the same as those used by Knight and Scherr. The general upper
bound principle for the (2n)th order energy is equivalent to the
variational principle obtained by Sinanoglu for the n-~th order wave
function, but our principle gives the exact (2n)th order energy
when the trial wave function is exact. The lower bounds for the

even order energies are generalizations of the lower bound obtained

by Prager and Hirschfelder for the second order. Mﬁ;{
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UPPER AND LOWER BOUNDS FOR RAXLEIGH-SCHREDINGER

- PERTURBATION ENERGIES

Introduction

There is increasing interest in the application of perturbation
methods to the solution of quantum mechanical problems. In most
cases of practical interest, the perturbation equations cannot be
solved explicitly so that variational principles are useful for
obtaining both the energies and the wave functions in the various
orders of perturbation.

In the present paper, variational principles are given for both
the upper and lower boiunds of the even order energies. For the |
upper bound principles, our contributions are minor. The principle

for the second order energy is well-ﬁnown1’2’3

, and Knight and
Scherr6 derived similar principles for the even order energies
through the twelfth order. Sinanoglu7 obtained variational
principles for the general (2n)th order energies, which are useful
for determining the wave functions, but do not reduce to the exact:
energy when the wave function is exact. The lower bound principle
given here is a generalization of the principle for the second
order energy given by Prager and Hirschfelder4. The application

of this principle to problems of practical interest is doubtful

due to the difficulty in solving the equation of constraint for




any potentials involving the interelectronic distance.

In the work that follows non-degenerate unperturbed states
and real wave functions are assumed throughout. Also, the
subscripts indicating the state under consideration are omitted

to make the notation less cluttered. The zeroth order wave
function is normalized to unity, ('Z’J (°’, Zlf(‘”) = |

The normalization of each of the other order wave functions,?frm”)

is left arbitrary, except where explicitly discussed in the text.

I; THE UPPER BOUND

The Hylleraas principle is a well known variational
principle for the first order Rayleigh-Schrgdinger perturbation
differential equation, and it provides an upper bound for the
second order perturbation energyZ. In this section the Hylleraas
principle is generalized to provide variational principles for
all of the higher order perturbation differential equatioms,
both for single and double perturbation problems, and to give R
upper bounds for all of the even order energies;
A. Single Perturbations

The Rayleigh-Schrgdinger perturbation differential equation

of order n is

(H-€®) ¥ & (V=)W= L ey
F=2
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In the following it will be assumed that the perturbation wave
functions of order less than n are known exactly. It will be
shown that the perturbation differential equation (Eq. (1)) 1s the

Euler equation corresponding to the variational principle
Q- f[ﬂ,(n) - €y Dagy ™y - Dy, -1

n

ZZ ¢ @ @, a1 K(n)] ar )

r=2

where K(n) is an arbitrary function which is not subject to the

variation as it is independent of W(n) . Let the unperturbed
Hamiltonian, Ho , be of the form
H = -% V2+U (3)
o i o >

~ where Uo is a scalar potential and the summation is over the

particles in the sYsteﬁ. Then Eq. (2) becomes

o™ =f[\v‘“)( _%Z ) v® ey Dy - gy
i

n

r=2

If it is assumed that w(n) vanishes sufficiently rapidly at

infinity, Gauss's theorem may be applied to Eq. (4) to give
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The Euler equation for this variational principle will be of the

form >

9T ”Z[ 2 ' .3 _of
v @ Ll d% ™, I acv(“%yi

1

+ 0 9 1 = 0 , (6)
oz da'h,

1

(n)
() LA
where I is the integrand in Eq. (5) and (¥ )z = —

i z; ‘
If the explicit form of I as given by Eq. (5) is inserted into

Eq. (6) the resulting Euler equation is

- Z‘ e(r)w (n-r) = 0 , ()



which is the same as Eq. (1) with Ho given by Eq. (3). The value
of K(n)
W(n)
(n)

in Eq. (4) is arbitrary. It may be chosen so that when
is an exact solution of the differential equation (Eq. (1))
Q will be equal to the (2n)th order perturbation energy, €(2n)'
From Eq. (1) for the exact ﬁ(n) '

&™, @ - ¢ v™y - o™ - D)D)
n

+ Z e o™ , oy (8)
r=2

When this expression is used in Eq. (2)

n
Q(n) - (W(n) e e(l)) W(n-l)) _Zg(r)(w(n), W(n-r)) :

v =2
But € (2n) may be expressed as’
n-1 2n-¥ (2n-1-3)
€ - ™, wih, -ZZ e (et
i=1 j=n-i
2n-1
-3 €W W@, Yy (10)
 jm

Thus in order to make Q(n) and £ (2v) .equal as given by Eqs. (9)
and (10)

n-1 2n-1i

fx(“)d’t' - Z Z' e () (1) (2n-i-5)y
' i=1 j=n-i+l
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The final result is then

- @, @ ¥ v 2 ¢, v-eP)y e,

n n-1 2n-i
2T €D G, )T Y WG, iy,
r=2 i=1 j=n-i+l
2n-1
- Z €(J) (‘P(o), v(Zn-J)) 2)
j=n+1

where E(H) and '\}r'(n) are approximations to the exact €(2n) and
w(n) respectively. When a’(n) is made stationary '\Il'(n) is the best
approximation to w(n) >, and when the state under consideration is
the lowest state of a given symmetry ‘E(R) is an upper bound to the

exact e(zn) R
3 5 ew a3
The latter, (Eq. 13) may be shown by writing-
T® - v ® 5@ ) (14)
Then
I O I S 1 - 5 4™

exact
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- ZZ e(r) (S ‘y(n) s ‘V(n-r)) . (15)

r=2

From the differential equation the last three terms vanish leaving

T - e® - 6v™, @ - e sv™) . e

(n)

may be expanded in terms of eigenfunctions of H° which yields

By

- e® =) wv® L (N el - ¢,
k= ' (17)

which is clearly positive when the state considered is the ground
state. Whenever the state considered is the lowest of a given
symmetry all of the scalar products (S\y(n) s ‘1’150)) with lower
(n)

states will vanish if it is assumed that gy has the same

W(o)

symmetry as , and the sum in Eq. (17) will still be positive.

The normalization that is used will affect the form of a(n)_

If the normalization
@, y®y - o (2=1, 2, ... ) (18)

is used Eq. (12) is simplified somewhat. Under this normalization

I = @™, @ - eed™ , v-eP) b,

n-1 ‘ n-1 2n-i-1
i ZZ c@F® | ey | Z Z e
r=2 i=1 j=n-i+l

Xa® o, @iy (19)




The other common normalization,

R

Z‘ w® , -0y _ 5 (£ =1,2,...n) , (20)
k=0

?i(n) ‘Q’(n)

also simplifies the form of . After some manipulation

under this normalization becomes

= @, @ - T+ 2 @@, (v-eWyuth)

n-1 n-1l n-1
’ZZ e(r) (—]F(n) , *(n-r)) _ Z‘ Z e(J) (\V(l), v(Zn-i-j)),
r=2 i=1 j=n-it+l

B. Double Perturbations

Double perturbations may be treated in an entirely analagous
manner to that which was used with single perturbations. The
Rayleigh-Schrgdinger perturbation differential equation of order

(r,s) is

(H _ €(°:°)) W(r,S) + (V - e(l’O)) w(r'lgsv) + (W - 6(0,1))

o]

n s
XyEoD oYY gy o ey 1)
j=1 2=1

In the following it will be assumed that the perturbation wave
functions of order less than (r,s) are known exactly. More
specifically, wave functions of orders (.£,k), (.2,s), and
(r,k) are known exactly where £ <r and k < s. Then the varia-

tional principle for Eq. (21) is




~(r s) _ (\V(r s) (Ho _ e(o,o)) W(r,s))

RF T - @10y yE L)y 4 @) |y gDy (58D,

r S
@) @me) (x5, s-2) f (r,8)
ZZ; G5 )y + ar .

j=1 2=1 (22)

This can be checked by means of the Euler equation as was done for

the single perturbations.

(r,s)

The problem remains to make the exact Q
(2r,2s)

equal to the

exact (2r,2s) order energy, £
K(r}s).

, by appropriate choice of

If the differential equation for the exact w(r,s) is

used, the exact Q(r,s) (Eq. (22)) may be modified to give

{5 - (r-1,8)

T | gLy ,

- s
+(¢(rys)’(w _ 6(031)) w(rjs-l)) _ Z Z e(J)l)(W(r)s) B w(r‘J,S'l))

+ f (T8 g . (23)

From the general expression for the (2r, 2s) order energy,

c(2rs28) w(r,S) , pr(r'l’s)) + (W(r,S) (r,s-l))

> Wy




- -’ (i,L) , G,k (2r-i-j, 2s-k-R)
Z Z Z Z c > ¥ )

(24)

(where the asterisk on the sum means the term i = 0, k = 0, j = 2r,
£ =25 is omitted) it can be seen that to make Q(r,s) and
\€(2r,2s) equal as given by Eqs. (23)and (24)

2s-k 4, r-1, 2r-i

f(rs)(rt, z Z ZZ ¢ U0

k=0 fR=s-k+l i=0 j=r-i+l

X(w(i’k) s w(zr'i-j: ZS‘k"AQ)) (25)

Thus the final result is
a(r,s) = (“;‘”(r:s)’(Ho - e(o:o)) v(t:s))

+2(\y(r ,8) (V- 6(1,0)) ‘k(r-l,s)) +2 (‘\F(r ,8) W - 6(0,1))*(1',3—1))

2

T S
ZZ Z e GG |, s,

j=1 k=1

S- 2s-k r-1 2r-i
) '

k=0 R=s-k+l i=0 j=r-i+l

(JJ'Q ) (\I’(i’k), w(zr'i"j: 2s-k-£ )),

(26)
where ‘6(1:,3) and ?V'(r’ s) are approximations to the exact
e(Zr,Zs) and ‘v(r,s) respectively. When ?s(r,s) is made
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(8 (x,8)

stationary is the best approximation to ,» and when

the state under consideration is the lowest state of a given

~(r,s) 6;(Zr,Zs),

symmetry Q is an upper bound to

bl(r,s) > €(2r, 2s) . (27

Various normalization schemes may again be used which will
modify the double perturbation equations in much the same way as

they modified the single perturbation equations.

II. THE LOWER BOUND

The Thomson principle of electrostatics has been extendedato
give a lower bound to the second order Rayleigh-Schrgdinger per-
turbation energy. In this section it is extended farther in an
analagous manner to give lower bounds for all of the even order
energies both for single and for double perturbation problems.
In part C of this section the total Schrgdinger equation is treated
in the same manner and a lower bound is obtained for part of the

total energy.

A, Single Perturbations
1t F™ i defined by

(@ o g (@ (28)

the perturbation differential equations take the form1

2
T v 0@ v @ O 1) oD

i

n
- 2\”(0) Z e(r) W(n-r) . (29)

r=2

From Eq. (9)




€(2n) = Q(n) = (\l!(n) s W - e(l))‘y(n'l))

exact

n
- Z €.(r)@,(rx) , W(n-r)) + f,{ﬂ’d'z- ) (30)

r=2

Therefore, from Eqs. (29) and (30)

, .
z fF(n) v, @ A F™y g = 2 W zfx(“)d't'.
i

Gn

Using Gauss's theorem and defining g§“) = -Vi F(n) R

Eq. (31) becomes

1

2
0)
e . [x®ar - 5T [V o® o ar
i
With the same definition Eq. (29) may be rewritten

2

i

n
0 r n-r
r=2
If an) is written as the sum of an approximate field and an

error

11
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(n) _ ~(n)
& =

g v 5™ (34)

Eq. (32) becomes

2
o) _fK(n) i - -%Z f‘y(O) 2 L 4y
i

i

2 2 :
] Z f yOTE® L g™ gy . %Z fv‘°’ sg, W™ a
i
(35)

2 2
- _%Z' fw(o) AR T Zf"’(o) (Mge(M e
i

2
+%Z fw(o) §¢t™ . g™ az . @6
i

From the constraint (Eq. (33))

2
Y v o sg™ -0 : 1)

i

Multiplying by F(n) and integrating,

2
ZfF(n) v, - (",(0) Sgin)) AT = o , (38)
i




and applying Gauss's theorem the following equation is obtained:

A 2 .
i

However, Vi F(n) = =g§n) H therefore

2
D A R YOS T 40)
i :

Thus upon inserting Eq. (40) into Eq. (36)

2
e f LRI fw(") . ™
i
2
+ %wa(O) sgin) ° Sgin) d‘t' . (41)
i

Since the second integral on the right is positive it must be true
that

A2
ey 4y fww) T L O +fK(n) >
i (42)

where fl((n) d’z' is given by Eq. (11) and v_(\;:(in) is subject to

the constraint of Eq. (33).

B. Double Perturbations

The treatment of double perturbations is entirely analagous

to that of single perturbatioms. F(r,s)

1 is defined by
J3) L R0 (0,0)

(43)

13



the perturbation differential equations take the form

2
Z v, - ((0,0) v, F (£,8)y o 5 (0,0 (y . €(1,0))W(r-1,s)
i

4 9 1Lr(0,0) W - 6(0’1)) v (r,s-1)

r S
- ZZ Z W(O,O) e(j:l) v(r-jj 5'1) . (44)
=1 2=1

From Eq. (23)

€(2r32s) = Q(I',S) = (“,(r}s) s (V _ e(l)o)) W(r'l:s)) +

exact
r s
(W(r,S) . (w - e(ojl)) W(r,S'l)) - Z Z e(j)l)
=t 4=
XD, g5y [0 gy 5)

Therefore, from Eqs. (44) and (45)

2
Zf p(T:8) v, (00 v, {58y g -
i
2 @ (2r,28) _ 2f1<(r’s) ar . (46)

This equation is identical in form to Eq. (31), therefore by the

same reasoning as in Sect. IIA it can be deduced that

+ fK(r,s) , 47)




3 3
where ‘/ﬂKar’s“ d?7” 1is defined by Eq. (25) and G,

, , Tr,s
apprcximation to —ViF( »5)

2
L 10,07 e,
) vy @0 e,

-
4.

r s
-2 w(O_ﬂO) W - 6(0}1)) W(r,s—l) * ZZ Z 111(0’0)
=1 8=1

X e(Jy‘Q 3 ¥ {r-73, S"Q):)

~(r,s)

subject to the comnstraint

-2 w(ozo)(v - 6(1,0)) W(r-l’S)

C. The Total Schrgdinger Equation

.2 .
The Schrodinger equation,

written in the form

,t'o)
€ -y

where Ho + /\V = H

relation

Eq. (49) reduces to

)
Z v, - ¢ v,

H-BY =0

CAV + Q(O) -EHY

F

If F 1is defined by the

¥ (0)

24 €@-n)y -

21’!(0} ¢ AV + e(o) - BY

which is of the same form as Eqs.

this equation may be treated in a similar manner to obtain

(29) and (44).

, can be

Therefore,

(48)

(49)

(50)

(51)
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0) ~
%) [v@ g Ees @, (6@ -nyw -
i

o ,
& (Av+ €9 - YY) (52)
23
where Z& is an approximation to - Vi F subject to the
constraint

?

| ()

3 = 24 (Ave @ gy (53)

1

Z v, (W(o)z

i

This result is of little value as the quantity bounded (Eq. (52))

is only part of the energy, not the total energy, and the constraint

involves the exact wave function.

16




17

References

J. 0. Hirschfelder, W. Byers Brown, and Saul T. Epstein,
"Recent Developments in Perturbation Theory", WIS-TCI-36,
University of Wisconsin Theoretical Chemistry Institute,
Madison, Wisconsin.

E. A. Hylleraas, Z. Phys. 63, 209 (1930).

R. E. Knight and C., W, Scherr, Phys. Rev, 128, 2675 (1962);
R. E. Knight and C. W. Scherr, Rev. Mod. Phys, 35, 431 (1963).

S. Prager and J. 0. Hirschfelder, J. Chem. Phys. 39, 3289 (1963).

H. Margenau and G. M. Murphy, "The Mathematics of Physics and
Chemistry”™ (D. Van Nostrand Co., Inc., New York, 1956) p. 389,

R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 436 (1963).

0, Sinanoglu, Phys. Rev. 122, 491 (1961); O, Sinanoglu,
J. Chem. Phys. 34, 1237 (1961),




